

Improving Hydrographic Rate of Effort

Presented by Scott Elson

RAN Hydrographic Vessels

Hydro 2010 Rostock-Warnemunde Germany

- Two LEEUWIN class Hydrographic Ships (HS)
- Four PALUMA class Survey Motor Launch's (SML)
- SML specialty is shallow water surveys
- Prior to 2009, SML's main sonar sensor was a Single Beam Echo Sounder
- A higher level of data accuracy and at a faster rate of effort – the Survey Motor Launch Hydrographic Survey System Upgrade Project was imperative

Company Proprietary

3

Survey Motor Launch Hydrographic Survey System Project

Hydro 2010 Rostock-Warnemunde Germany

- The SMLHSS was developed by L-3 Nautronix for the Royal Australian Navy
- Prime Objective achieve a Rate of Effort from each SML platform of 7 sq NM per 12 hour survey day collecting ZOC A2 data in depths between 20m and 50m
- Secondary Collect ZOC A1 data and detection of 1m³ features in depths between 5 and 50

ZOC A2 Survey

Hydro 2010 Rostock-Warnemunde Germany

- > ZOC A2 Survey:
 - "Full area search undertaken. All significant seafloor features detected have had depths measured"
- > Full area search achieved by:
 - Side Scan Sonar (SSS) OR
 - Multibeam Echo Sounder (MBES)
- Modern MBES provide excellent bathymetry data. Tempting surveyors to obtain 100% bathymetric coverage (ZOC A1). However swath coverage is limited in shallow water significantly reducing Rate of Effort
- Prior to MBES traditional survey methods for ZOC A2 would achieve better Rate of Effort using a Single Beam Echo Sounder and Towed Side Scan Sonar

Company Proprietary

5

Rate of Effort Approach

Hydro 2010 Rostock-Warnemunde Germany

- L-3 Nautronix approach was to combine the old and new methods.
- To maximise ROE the MBES is used as a gap filler in conjunction with a high resolution side scan sonar
- The sonar combination provides full coverage for feature detection at the required resolution.
- The MBES provides bathymetry on all detected features.

Santambar

Primary Design Considerations

Hydro 2010 Rostock-Warnemunde Germany

- > To Achieve ROE:
 - 250m line spacing
 - Platform speed of at least 8 knots
 - At least 3 pings required for Feature Detection
- A Side Scan Sonar with 300m range allows for a 50 overlap in swaths with nadir gap of 30m
- Feature Detection (coverage) in the nadir region of the SSS would be provided by the MBES
- No time to stop for SVP's

TO THE REAL PROPERTY OF THE PARTY OF THE PAR

Company Proprietary

3

Primary Design Considerations - SSS

Hydro 2010 Rostock-Warnemunde Germany

- Klein 5000 Side Scan Sonar satisfied required resolution and feature detection capability at 10 kts with proven swath widths of up to 300m tested in cooler North American waters
- Far North Australian waters (22 to 28 degrees C), the attenuation of the signal is significantly greater, reducing the sonar travel distance thus reducing the swath width
- Non-recurring engineering was undertaken to modify the Klein 5000 transmitter, receiver and array to increase signal to noise ratio and higher sonar transmitter energy output were undertaken

Primary Design Considerations - MBES

Hydro 2010 Rostock-Warnemunde Germany

- Reson Seabat 7125 Multibeam Echo Sounder satisfied the require accuracies in the associated water depths
- Ping rate of the MBES is dependent on the Vessel Speed and range setting of the MBES
- As the depth increases the range setting of the MBES must be increased, which decreases the ping rate
- ➤ The Reson 7125 in 20m water depth would detect a 1m³ feature at a maximum speed of 6 knots only due to limitation in ping rate

Company Proprietary

(3

Primary Design Considerations

Hydro 2010 Rostock-Warnemunde

- Reson 7125 improve feature detection capability by increasing the ping rate thus sacrificing the outer swath
- In this mode the Reson 7125 can be used at a speed of 8kts (depths between 20 and 50m) detecting a minimum size 1m³ feature

Company Proprietary

9 Different Transmitting Sonars

Hydro 2010 Rostock-Warnemunde Germany

- To achieve ROE the MBES and SSS had transmit to simultaneously without interference
- ➤ Further the Customer Specification required 9 different transmitting sonars, 8 were hull mounted. Complicating the potential for interference.
- Acoustic Interference can occur between sonars due to similar frequencies of operation, where the transmit spectra of one sonar overlaps the receive spectra of another.

Company Proprietary

11

Acoustic Interference

Hydro 2010 Rostock-Warnemunde Germany

- > Reducing acoustic interference:
 - shifting one or more of the frequencies of operation of a particular sonar
 - positioning on the hull to minimise/stop interference with other sonar
 - optimise performance of the sonar and by incorporating a sonar control system, to control acoustic transmissions
- > Shifting Frequencies:
 - Single beam and hull mount side scan sonar frequencies were moved for least interference

Company Proprietary

13

Sonar Control System

Hydro 2010 Rostock-Warnemunde Germany

- L-3 Nautronix designed a Sonar Control System (SCS) which determined when the MBES, SSS, HSSS, and SBES transmitted
- The SBES was triggered at least 1 Hz with the SSS operating at an integer multiple of 1 Hz and the MBES operating at an integer multiple or fraction of the SSS

Secondary Design Considerations

Hydro 2010 Rostock-Warnemunde Germany

- The technology had the potential to cover the 7 sq NM a day but did the platform and the crew?
- Designed to solve the time to setup and maintain a survey
- The SML are deployed with a limited number of hydrographers on board and each member has a range of different tasks other than hydrographics

Company Proprietary

15

Survey Setup Time - SCS

Hydro 2010 Rostock-Varnemunde

- Sonar Control System was synchronising the sonar
- Built as an expert system.
- User to select the type of survey they would like to achieve (for example, ROE Survey) and the SCS controls the ping rate and range of the Sonar.
- With a depth interface the SCS automatically changes the ping rate and range with depth.

Company Proprietary

Survey Setup Time - Calibration

Hydro 2010 Rostock-Warnemunde Germany

- MBES hull mounted, patch test not required at the start of each survey
- Mechanical roll and pitch offsets were measured during the installation

Company Proprietary

17

Maintain Survey Time - Acquisition

Hydro 2010 Rostock-Varnemunde Germany

- > Real Time QC using QPS QINSy
- NRE to automatically export raw files rather than manually exporting at end of survey
- > Real time processing of survey on a line by line basis

Company Proprietary

Maintain Survey Time – SSS deployment System

Hydro 2010 Rostock-Warnemunde Germany

- The Side Scan was deployed using a winch and Aframe.
- > Key considerations:
 - tow the SSFFF and SSS simultaneously,
 - SSS positioning,
 - time taken to conduct line turns.
- > SSFFF at 10 kts requires ~40m of tow cable in the water
- Side Scan was towed with a depressor, meaning at 30m water depth, approximately 30m of cable out. Minimise chance of entanglement.
- Satisfied accurate positioning Side Scan as close to the Vessel

Company Proprietary

SMLHSS Trials Results

Hydro 2010 Rostock-Warnemunde Germany

- The SMLHSS was commissioned in June 2009 on HMAS MERMAID.
- Further sea trials were conducted on HMAS PALUMA, HMAS SHEPPARTON and HMAS BENALLA
- Sea trials were conducted in a variety of conditions from Sea State 1 to Sea State 4, verifying all functional performance specifications with all sea acceptance tests passing.
- > Two phase approach:
 - Position and depth accuracy trials conducted off Cairns
 - Naval Test Areas

Company Proprietary

Rate of Effort

Hydro 2010 Rostock-Warnemunde Germany

- A ZOC A2, 7 sq NM survey was conducted in a Survey Area situated immediately adjacent to Cape Bedford, 28 km NE of Cooktown
- The survey was repeated for two consecutive days. Survey coverage greater than 7 sq NM was achieved on both days.
- ➤ The Survey was completed in 10.5 hours on Day 1, and it took 9.6 hours on Day 2.
- ➤ Test Area contained 19 lines and has a total area of 7 sq nm. Water depths range from 26m to 33m.

Company Proprietary

Initial Operational Release

Hydro 2010 Rostock-Warnemunde Germany

- SEA 1401 Survey Motor Launch Hydrographic Survey System Phase 3 Upgrade Project finalised 30th April 2010
- ➤ Initial Operational Release achieved 22nd June 2010

Company Proprietary